
Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 1 of 9

STUDY GUIDE
Directions: Read the problems carefully. Circle all correct answers to multiple choice questions. Explain ”why”

if you circle FALSE. Fill in all blanks (unless you decide a T/F is FALSE). Circle the answer you feel

most appropriately fills the blank if choices are given. Answer to the best of your ability.

This is a take-home test. You may ask ME questions for clarification — not each other. Feel free to

attach pages to the end of the test if you need to continue a long answer. Please keep in mind that

questions that ask you to write code are intended to be done without the aid of the compiler.1 Take

your time, but don’t lose track of how much time is left.

Good luck! Have fun!

1) Name at least two benefits that the classmechanism give us over using vectors with respect to data storage.

A) classes can hold values of different types; vectors are limited to holding values of a single base type.

B) classes protect their data in private areas; vectors allow anyone to walk up and overwrite data with a

simple [] = combination.

C) classes make us write ten or twenty functions when four would do. vectors never made anyone write a

function.

D) classes collect small pieces together to more naturally represent real-world data; vectors would require

they all be the same type or would need to be in parallel.

E) classes couple the data closely with the operations that act on them; vectors would have the operations

as extra functions polluting our global namespace.

2) Given that a class Rational exists and given the vector:

vector<Rational> values;

And given that this class has a method to add two Rational objects:

Rational Rational::add(const Rational & b) const;

And a [pair of] method(s) to divide a Rational object by an integer:

Rational Rational::divide(long n) const;

Rational Rational::divide(unsigned long n) const;

Show code to calculate the average of all the elements in the vector values. (Hint: what is the average of

two – or more – rational numbers?)

Rational sum(0), avg;

for (vector<Rational>::size_type r = 0; r != values.size(); r++)

{

sum = sum.add(values[r]);

}

avg = sum.divide(values.size()); // may need to typecast if size_type’s are 16-bit

3) Before you can open a connection to a file stream, you must do three things:

A) declare a vector of objects to store the file contents.

B) get from the user the name of their file.

C) #include the library fstream.

D) declare either an ifstream or an ofstream variable to connect to the file with.

E) declare a variable to count how many lines we’ve processed in the file.

1I can’t keep you from using it, but try to do it on your own first. . . please?! *big sad puppy dog eyes*

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 2 of 9

STUDY GUIDE

4) Once you are ready, you’ll need to do two things to make a connection to a user’s file:

A) clear the stream variable to make sure it is ready to use.

B) convert the string filename variable to a c str as you pass it to the file connecting method.

C) pass your string filename to the file connecting method as is.

D) use the connectmethod with respect to your stream variable.

E) use the open method with respect to your stream variable.

5) Given the following sort function:

// sort between start and end indices (inclusive)

void good_bubble(vector<char> & vec,

vector<char>::size_type start,

vector<char>::size_type end)

{

vector<char>::size_type loop = start, cur;

bool done = false;

while (loop != end && !done)

{

done = true;

for (cur = start; cur != end; ++cur)

{

if (vec[cur] < vec[cur+1])

{

swap(vec[cur], vec[cur+1]);

done = false;

}

}

++loop;

}

return;

}

, alter it to sort a vector of Rational objects. (Assume that you are given a method named less in the

Rational class which compares its caller and single argument, returning true if the caller is less than the

argument and false otherwise. Its declaration looks like this:

bool Rational::less(const Rational & r) const;

.) (Please rewrite only the lines that must change. This will make it easier.)

void good_bubble(vector<Rational> & vec,

vector<Rational>::size_type start,

vector<Rational>::size_type end)

. . .

vector<Rational>::size_type loop = start, cur;

. . .

if (vec[cur].less(vec[cur+1]))

Don’t forget to code a swap() function to go along with your version of the good bubble() sorting function:

void swap(Rational & a, Rational & b)

{

Rational c;

c = a;

a = b;

b = c;

return;

}

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 3 of 9

STUDY GUIDE

6) When opening a file connection, make sure the stream connected successfully to the file by:

A) clear the filename string inside the checking loop.

B) checking for fail or !good or even just !.

C) use " instead of getline for the filename the second [and later] time[s].

D) clearing the stream variable after the checking loop is done.

E) using close and clear inside the checking loop.

7) A class named Avg contains a data member named Nums which is a vector of double values. Show defi-

nitions for accessor and mutator methods for this data member. (Hint: Would you need to retrieve ALL of the

vector values at once or just one at a time? Thought-provoker: How do you append new values to the Nums

vector? Thought-provoker: Does the programmer using the Avg class need to know how many numbers are

stored in Nums?)

typedef vector<double>::size_type vcD_sz;

bool Avg::set_num(vcD_sz which, double num)

{

bool worked = false;

if (which < Nums.size())

{

Nums[which] = num;

worked = true;

}

else if (which == Nums.size())

{

worked = add_new_num(num);

}

return worked;

}

bool Avg::add_new_num(double num)

{

// should we check Nums.max_size()?

Nums.push_back(num);

return true;

}

double Avg::get_num(vcD_sz which) const

{

return (which < Nums.size()

? Nums[which] : -42.0);

}

vcD_sz Avg::get_num_nums(void) const

{

return Nums.size();

}

8) What is the type of getline’s first argument that it can be used to read from either cin or an ifstream vari-

able?

istream & is compatible with both the console stream cin and any ifstream variable.

What type should you use to allow a function to ’display’ to either cout or an ofstream variable?

ostream & is compatible with both the console stream cout and any ofstream variable.

9) Of the following prototypes, choose the best prototype for a method to input an object of the class Rational

from the user. (Recall that a rational number — or common fraction — has a numerator and denominator: 1{2,

-4{5, 7{3, etc.) But not 2
1

3
nor

-0.80.A) Rational Rational::input(void) const;

B) Rational Rational::input(void);

C) bool Rational::input(void);

D) bool Rational::input(long & numer, long & denom) const;

E) bool Rational::input(Rational & rat) const;

Now show an example of a call to the method whose prototype you chose above. (Include any necessary

declarations or other statements for it to work.)
Rational a;

cout << "Some kind of prompt: ";

while (! a.input())

{

// clear, ignore, error message, re-prompt...

}

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 4 of 9

STUDY GUIDE

10) What functions/operations can you use to get data from an ifstream variable?

", getline, peek, etc.

What functions/operations can you use to put data into an ofstream variable?

!, setw, flush, etc.

11) A class’ copy constructor is automatically called in three (3) situations. What/When are they?
A) when one object is declared and at the same time initialized with another object that already exists

B) when an object is declared and at the same time initialized with values chosen by the main programmer

C) when a function accepts an argument using the value mechanism, the formal argument is copy con-

structed from the actual argument

D) when a function accepts an argument using the reference mechanism, the actual argument is copy con-

structed from the formal argument

E) when a function returns its result using the value mechanism, the result given back to the caller is copy

constructed from the value of the return expression

12) What two new keywords are used to specify where in the program access to the members of a class object is Oh. . . access

specifier. . .available? Explain who (i.e. what parts of the program) can access members of each access type.
private only the members (methods; data doesn’t access other data) of the class itself can access private members (data or

methods) of a class

public any part of the program can access public members (methods, typically; data would be silly) of a class

13) TRUE / FALSE All methods of a class can access the private data of the class.

TRUE / FALSE Data which is public is generally considered normal when defining a class.

TRUE / FALSE private methods, although rare, can often be useful for tasks the class must (or should)

manage on its own.

14) Given that a class exists named Complex which has a method to add two Complex objects, we might call it

like this (note the flexibility the caller has):

Complex a, b, c;

// fill in a and b

// with values somehow...

c = a.add(b);

or even. . .

Complex a, b;

// fill in a and b

// with values somehow...

a.add(b).output();

Show the definition of a method to add two Complex objects. (Recall that a complex number is of the form

a ˘ bı where ı represents
?

´1 — the square root of ´1; an imaginary value — hence the funny i.) (Hints:

Does addition change its operands? What is the result of adding two complex numbers? How many arguments

are required to add two complex numbers in a class method?) (Thought-provoker: Some might desire to add

a Complex number to a real. . . er. . .double value. Can you overload the add method for this situation?)

// adds the Complex object ’other’ to the calling object

// to produce the result which is returned to the caller

const Complex Complex::add(const Complex & other) const

{

return Complex(real + other.real, imag + other.imag);

}

// adds the ’real’ other value to the calling object

// to produce the result which is returned to the caller

const Complex Complex::add(double other) const

{

return Complex(real + other, imag);

}

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 5 of 9

STUDY GUIDE

15) Any/All classes should include at least the following methods:
A) constructors (at least default and copy)

B) constructs (golems, robots, etc.)

C) accessors & mutators

D) Mack & Cheesy

E) input & output

16) What is the member access operator in C++?

The period or dot (.) is used to access members of a class in C++.

17) What does the term ’calling object’ mean, anyway?

The calling object is the object on the left side of the dot (.) operator in the call to a class method. I.E. a is the calling object in the

Complex addition problem (#14).

18) In relation to other parts of a program, where would a class definition be placed?

Either above the main (typically after the using directive) or in the interface (.h) file of a library.

What about the definitions of [non-inline] class methods?

Either after the main or in the implementation (.C or .cpp) file of a library.

19) TRUE / FALSE In a method to add two Rational numbers, the calling object acts as the left-hand addend i.e.

le f t ` right ñ
left.add(right)

(value to be added). (See the explanation of rational numbers in #9.)

TRUE / FALSE The single Rational argument acts as the left-hand addend.

TRUE / FALSE The result of the addition is stored in a new Rational object — but we still may possibly

change either the left- or right- hand objects — or both!

TRUE / FALSE This new object is returned from the add function by the return value mechanism.

20) What is required to make a class argument ’pass-by-value’?

Nothing — just pass the formal argument with the class type and a name and pass the actual argument like

normal.

What is required to make a class argument ’pass-by-reference’?

As with the built-in types (or string— which is a class, after all), place an ampersand (&) between the type

of the formal argument and its name. The actual argument is passed like normal.

21) Explain (briefly but correctly) the purpose of accessor and mutator methods in a class.

accessor allows caller to view a copy of the value in a private data member of the class (without direct

access, they cannot accidentally change the member’s value!)

mutator allows the caller to perform controlled changes to the specified private data member of the

class; contains any error checking and/or validity checking codes necessary to ensure that the

class’ data members are not butchered, garbled, or otherwise messed up/destroyed

22) Why don’t class input methods typically display a prompt for the user?

They are trying to be as generic/general/re-usable as possible. With a literal prompt, they’d be in the way of interface customization

or be too specific to a particular application. With an argument prompt. . . well, Jason just said it would be ’untrue to the zen of class

programming’. . . or something like that. And with a prompt member (& proper accessor/mutator), we’d be managing data outside of our

class’ ’true nature’. . . whatever that means.

Shouldn’t the program always prompt before input?

Yes, but that is the program — not our class! We want to be re-used by program after program after program. . . ”Don’t tie me down!”

Why don’t class output methods typically print labels and/or spacing?

Similar to the input methods part and prompting — it isn’t generic! If I want my time writing this class to be rewarded by lots of people

downloading it and using it, I’ve gotta keep myself. . . er. . . it as general and re-usable as I can!

Shouldn’t the program always label outputs?

Well, the program should, certainly. But I’m a simple data type and I don’t know what kind of program I’m in. I’m not going to presume

what kind of labels or even spacing might be appropriate around my data! I’ll just print the raw essence of my being to the display and

hope the program has set up appropriate labeling and spacing either before or after me if not both. . .

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 6 of 9

STUDY GUIDE

23) Name and describe the three types of constructors briefly.

default takes no input, fills in data members with sensible values (or purposely erroneous values)

when programmer didn’t supply any

copy takes a [constant] reference to the class type as input, fills in data members of the object

being constructed with copies of those from the object we have a reference to (via the formal

argument)

initialization
parameterized

???

takes formal arguments appropriate to initialize some/all data members of the class as input,

there may be many versions of this type of constructor — each would take a different number

or type(s) of arguments to overload the others

24) Which of the following are benefits that classes give us over the built-in data types?

A) improved initialization of new variables/objects via constructors (most notably the default constructor —

built-in types are simply left with garbage bits by default!)

B) data are closely coupled with the operations that work with them

C) allow us to more naturally represent real-world data by collecting together all the little pieces in one place

rather than scattered variables each with a part of the whole

D) collected data can be of multiple different types — a built-in typed variable is just the one type (even a

string can only collect many values of the type character together!)

E) primitive data security via the private/public keywords and the accessor/mutator methods we provide

25) Other than those you chose above (#15), what methods might/should a Complex class include?

A) Complex add(const Complex & c) const;

B) Complex add(double x) const;

C) Complex reciprocal(void) const;

D) Complex conjugate(void) const;

E) double magnitude(void) const;

26) What is the only real difference between an ADT and a class?

An ADT is a general description that could be used by a programmer to implement it in any programming language. classes are the C++

mechanism for implementing ADTs.

What does ADT stand for, anyway?

Abstract Data Type

27) How is overloading involved with constructors?

Since all constructors have to be named after the class they construct, we must overload them to allow the programmer using our class

to create their objects in useful ways: by default, with specific values right away, as a copy of another object, etc.

28) Code the output method for a Rational class. (See the explanation in #9 about what a rational number is.)

(Hint: Will this method label or space anything? Does it print anything but the numerator and denominator?)

void Rational::output(void) const

{

cout << numer << ’/’ << denom;

return;

}

29) What are the actual differences in structure and class behavior in C++?

A struct has a default of public access for all of its members whereas a class has a default of private access for all of its members.

looks around What? Why are you still here? That’s the only difference in the language’s eyes! I swear!

Oh, alright! Programmers tend to not use many of the object-oriented features of C++ when designing with a struct! They all work, but

we just don’t use them. . . it’s the old C programmer in us crying out in irrational pain. . . *whimper* *sniff* Are you happy now?!

(And it helps when you are moving back and forth between multiple languages on a single project. . . or even multiple projects at once!)

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 7 of 9

STUDY GUIDE

30) Show how to rewrite the following method definition as a single line. (See the explanation in #9 about what a

rational number is.)

Rational Rational::divide(const Rational & r) const

{

Rational t;

t = r.reciprocal();

t = multiply(t);

return t;

}

Rational Rational::divide(const Rational & r) const

{

return multiply(r.reciprocal());

}

31) Code a method to compare two Rational objects and tell if the caller is less than the other. (See the explana-

tion in #9 about what a rational number is.) (Hint: You’ll want to be as accurate exact as possible.) (Thought-

provoker: How long is your method? Is there something you should do to it, then?) (Thought-provoker 2: Will

your method change either object it is comparing? Is there something you should do to them, then?)

Either:

bool Rational::less(const Rational & other) const

{

return numer*other.denom < denom*other.numer;

}

Or, to inline it:

class Rational

{

// ...

public:

bool less(const Rational & other) const

{

return numer*other.denom < denom*other.numer;

}

};

32) Is the inline keyword needed to inline a class method? Why/Why not?

NO!
The compiler feels we must be attempting to inline the method if we simply define it inside the class definition.

33) Why does the mutator of a Rational classwork with both data members simultaneously whereas a Complex

class has separate mutators for its two [numeric] data members? Don’t we normally follow that latter tactic?

What’s up with the Rational class mutator?!

It is actually not a question of C++ or the mutator itself, but of mathematics. Because of the intimate mathematical relationship between

the numerator and denominator of a rational number — the two must be changed in lock-step. Most class’ [we’ve seen] don’t have data

values which are so tied together. For a Complex class or a Point2D class, the data members are on separate axes/dimensions, for

instance.

34) What is a member initialization list with respect to constructors?

When defining the constructor (either as an inline method or out-of-line), place a single colon (:) after the constructor’s argument list followed by a

comma separated list of the class’ data members. After each member’s name, place a pair of parentheses. In the parentheses for each member, place an

expression with which to initialize the member. After the list is over, you can open the constructor’s body. (If the body is empty because all set-up tasks have

been completed in the member initialization list, then just close it right away: tu. Otherwise, complete set-up tasks before closing the body!)

Give an example of using a member initialization list for a Rectangle class. (Hint: A rectangle can be defined

by its upper right and lower left corner coordinates — two Points.)
Rectangle::Rectangle(const Point & low_left, const Point & up_right)

: lower_left_corner(low_left), upper_right_corner(up_right)

{

}

Initializer lists aim to make class object construction more efficient. How?

Normally the compiler tries to fill in all class data members with their default or ’zero’ value before the constructor’s body executes.

However, if an initializer list is present, the compiler will not do this default filling but rather simply perform the initializations the programmer

has requested instead. So on many constructors we can place the values we’d normally want (either reasonable defaults or explicitly

erroneous values we can detect — the same ones our default constructor would use) before we call the mutator methods inside the body

to do any necessary error/validity checking. (And on a default constructor we’re done. And on a copy constructor we skip these simple

values and simply copy the other object’s data values into our members in the list.)

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 8 of 9

STUDY GUIDE

35) In the following code fragment:

i) explain what object(s) is/are being constructed

ii) from what it/they is/are being constructed

iii) which constructor(s) will be used to perform the construction(s)

(See the explanation in #9 about what a rational number is.)

void f(Rational a); // a by copy from x (below)

void h(Rational & a); // nothing -- pass by reference

inline

Rational g(void)

{

Rational t; // t by default from nothing

return t; // result of g by copy from t

}

// in some function...maybe main?

{

Rational x; // x by default from nothing

Rational y(4, 3); // y by init/param from 4 & 3

Rational z = y; // z by copy from y

Rational w(x); // w by copy from x

Rational r(-2); // r by init/param from -2 (& 1)

f(x); // a is copied from here

x = g(); // result of g is called for here,

// but nothing is ctor’d ˜here˜

}

In summary:

i) being constructed ii) constructed from iii) constructor used

a x copy

nothing N/A N/A

t nothing default

x nothing default

y 4 & 3 initialization/parameterized

z y copy

w x copy

r -2 (& 1) initialization/parameterized

result of g t copy

nothing N/A N/A

36) Could a class have the following two methods in it and still compile/run fine?

void f(void);

void f(void) const;

How would the compiler know which one to call?!

Yes, it would work. The compiler can determine which one to call based on whether the calling object needs to remain constant or not.

i.e. The constant version is called when the calling object is a constant object, and the non-const version is called otherwise.

STUDY GUIDE STUDY GUIDE

Test 1 — Review & Arrays

STUDY GUIDE

CSC 122 Sections 1 & 2
Time: 75 minutes Calculator: OK

Notes: NONE

Form C — 9 of 9

STUDY GUIDE

37) With respect to the Rational class discussed in #9 — and in particular the inputmethod you designed the

API for and put to use there — show how you would implement this method. (Thought-provoker: Is there any

error checking to be done for a Rational number or its input format? If so, show how you should probably

implement this, too. . .)

// reads a numerator, separator, and denominator from the user

// uses the mutator for proper error checks (we trust the user

// even less than the other programmers! *grin*)

bool Rational::input(void)

{

char t;

long n, d;

bool okay;

cin >> n >> t >> d;

okay = !cin.fail() && t == ’/’ && set(n, d);

if (!okay)

{

cin.clear(ios_base::failbit);

}

return okay;

}

// we must mutate both members at once because changing one will

// affect the other -- mathematically!

bool Rational::set(long n, long d)

{

bool okay = true;

long g = gcd(n,d); // non-class function!

numer = n/g;

denom = d/g;

if (denom < 0) // nut-jobs!

{

denom = -denom;

numer = -numer;

}

else if (denom == 0) // el-stupido!

{

denom = 1; // ignore the truth

okay = false; // but report it...

}

return okay;

}

STUDY GUIDE STUDY GUIDE

