
A First Arithmetic Parser
The purpose of this study unit is to guide you through a first success in creating an arithmetic parsing
computer – an operator-precedence parser that supports some minimal parsing features such as
confix (grouping) operators, function application, and operator name disambiguation by context.

The first section covers mostly vocabulary and theory. Then we’ll set about implementing in the
operator precedence parsing algorithm a c++ implementation. This will be followed by a natural
application: creating a graphical plot of a function using OpenGL. Finally we’ll attempt an
emulation – or imitation – of the old Apple II game, Algebra Arcade, which is essentially a curve
fitting game.

Background and Theory

An operator is something (typically a symbol like ‘+’ or ‘*’) that denotes a mathematical operation.
An operator does operations on operands. We can classify operators as coming before, after or
between operands. Consider the two character expression, “–2.” This is an example of a prefix
(before the operand) negation operator. The sum “2+3” illustrates the infix (between operands)
addition operator. The negation operator is an example of a unary operator. A unary operator takes
only one operand. A binary operator takes two inputs; like the infix operator.

The arity of an expression is the number of operands it takes, typically unary or binary.

An arithmetic expression is a sequence of operators and operands where operators fall into one of the
following categories:

Operator
Type Arity Placement Examples

 prefix unary prior to operand Unary minus (negation)
 postfix Unary after operand Factorial

 infix binary between operands Addition, multiplication, division &
exponentiation

 confix Unary surrounding
operand Parentheses, half-open ranges

 function
application binary

after first
operand and

surrounding second
operand

Elementary functions like ln(x),
array indices such as a[5]

The confix and function application operators are parsed using an open symbol and a
close symbol. The "open" symbol to the left-hand side and "close" symbol to the right.

Constructing the parser
A stack is a way of storing data in a pile. The parser we’re going to construct uses two separate
stacks: an opr stack to push operators onto and a val stack to push operands on. performs two
main kinds of operations:

• Shift: put operators on top of the opr stack and operands on the val stack.
• Reduce: take an operator off the opr stack and one or more operands off the val stack and

put the result of the operation on the val stack.

A look-ahead parser will wait to perform some operations until more of the expression is read. To
keep things simple, we’ll be using a shift/reduce parser with zero look-ahead. Any operand in the
input stream is immediately shifted onto the operand stack; operators are immediately shifted onto
the operator stack only if the operator stack is empty. Otherwise, the following table determines the
action of the parser depending on the type of the operator on top of the operator stack and on the type
of the current operator token.

Parsing table

Current operator

Prefix Postfix Infix Confix

Open

Confix/
Function
Close

Function
Open

End of
Input

Prefix shift precedence precedence shift reduce precedence reduce
Postfix - reduce reduce - reduce reduce reduce

Infix shift precedence precedence/
associativity shift reduce precedence reduce

Confix
Open shift shift shift shift shift shift reduce

Confix/
Function
Close

reduce reduce reduce reduce reduce reduce reduce

Top
of

Stack

Function
Open shift shift shift shift shift shift reduce

Description of parsing actions

• A shift operation pushes the current operator token onto the operator stack (and maybe
gets the next symbol too.)

• A reduce operation pops the operator token off the top of the operator stack, and then pops
the appropriate number of operands from the operand stack: applying the operator to the
operand(s) and pushing/replacing the result on the operand stack appropriately. Reduction of
confix operators and of function application requires popping two operators (open and
close) off the operator stack. The name of the operation may be another operand.

• A precedence operation (computed by parseTable in the instance presented here)
determines the relative precedence of the operator on top of the operator stack (tok) and the

current operator (pretok).
o If pretok has a lower precedence than tok, shift.
o If pretok has a higher precedence than tok, reduce.

• A precedence/associativity operation first compares the precedence according to
the precedence operation: if the precedence is equivalent, associativity is considered:

o If top associates left of current, reduce.
o If top associates right of current, shift.

Rejecting Invalid Expressions

Operator-precedence parsers are often avoided because they accept invalid strings. The shift-reduce
parser as specified above will consider the expressions x + x, + x x, and x x + equivalent, even
though only the first form is correct. This weakness is easily remedied with the use of the following
state machine to track what type of operator or operand is expected at any given point in time.

The state machine has three states:

• The pre-op state is where confix open and prefix operators accumulate until, typically, an
operand arrives, triggering the post-op state.

• The post-op state is where we can accumulate postfix operators to the operand or confix close
operators and function close calls.

• The error state is entered if an invalid expression is detected by the state machine.

Disambiguation of Operator Names

The meaning of an operator’s token may depend on context. For example, the unary negation and
binary minus operators that use the same symbol '-', the absolute-value confix operators use the
same symbol '|' for both open and close. A good operator-precedence parser will support such common
parsing requirements as function application, confix (grouping) operators, and operator name disambiguation.

An Example
Below is a step-by-step accounting of the operator precedence algorithm as it is used to parse the
expression a*|b+c|+5^a^b using standard rules for precedence and associativity.
State Operand Stack Operator

Stack Token Token type Action

Pre a operand shift

Post a * infix operator shift

Pre a tMul | confix open or
confix close

disambiguate as confix open,
shift

Pre a tMul tLAbs b operand shift

Post a b tMul tLAbs + infix or prefix
operator disambiguate as infix, shift

Pre a b tMul tLAbs
tAdd c operand shift

Post a b c tMul tLAbs
tAdd | confix open or

confix close disambiguate as close, reduce

Post a (b+c) tMul tLAbs | confix open or
confix close disambiguate as close, reduce

Post a (|b+c|) tMul + infix or prefix disambiguate as infix, compare
precedence, reduce

Post (a * (|b+c|)) + infix or prefix disambiguate as infix, shift

Pre (a * (|b+c|)) tAdd - infix or prefix disambiguate as prefix, shift

Pre (a * (|b+c|)) tAdd tUMin 3 operand shift

Post (a * (|b+c|)) 5 tAdd tUMin ^ infix compare precedence, shift

Pre (a * (|b+c|)) 5 tAdd tUMin
tPow a operand shift

Post (a * (|b+c|)) 5 a tAdd tUMin
tPow ^ infix compare precedence, compare

associativity, shift

Pre (a * (|b+c|)) 5 a tAdd tUMin
tPow tPow b operand shift

Post (a * (|b+c|)) 5 a b tAdd tUMin
tPow tPow end end reduce

Post (a * (|b+c|)) 5
(a^b)

tAdd tUMin
tPow end end reduce

Post (a * (|b+c|))
(5^(a^b)) tAdd tUMin end end reduce

Post (a * (|b+c|)) (-
(5^(a^b))) tAdd end end reduce

Post ((a * (|b+c|)) + (-
(5^(a^b)))) end end accept

Exercises:

1. In the expression –3 * (a ^ 2 + 3) which symbols are operators and which
symbols represent operands?

2. In the expression ()()2* 5! ^ 2f x− + there are 13 tokens.
a. Which tokens represent operands?
b. Which operators are unary. Which are binary?
c. Which of the operators is infix?
d. Which of the operators is confix?
e. Which of the operators is prefix?
f. Which of the operators is postfix?

3. If there is a postfix operator on top of the stack and an infix operator is read, what
action takes place? Give an example of a simple expression in which this would
occur.

4. If there is a postfix operator on top of the stack and a confix operator is read, what
action takes place? Give an example of a simple expression in which this would
occur.

5. If there is an infix operator on top of the stack and a prefix operator is read, what
action takes place? Give an example of a simple expression in which this would
occur.

6. If there is an infix operator on top of the stack and another infix operator is read,
the result could be either to reduce or to shift. Why? Give several examples of
simple expressions in which a reduction or a shift would occur.

7. Write a sentence or more to describe the purpose of the state machine and how it
helps to parse mathematical expressions.

8. Complete a table like the open above, tabulating the state, the contents of the
operand and operator stacks, the next token read and what type of token it is and
what action is taken for each of the following expressions.
a. 1 + 1 + 1
b. 1 + (2 + 3)
c. 2 * 3 / (2 + 3) ^ (4 – 6 / 3)

References:
http://www.boost.org/index.htm
http://epaperpress.com/oper/index.html
http://www.fredosaurus.com/notes-cpp/
http://souptonuts.sourceforge.net/code/desktop_calc.cc.html
http://ldp.rtin.bz/LDP/LGNET////106/chirico.html

