
C++ code for a linear search: 
 
template <typename Arr, typename Elem> 
long linsearch(const Arr & a, long MAX, const Elem & f) 
{ 
    long i = 0; 
    while (i != MAX && a[i] != f) 
    { 
        i++; 
    } 
    return (i == MAX ? –1 : i); 
} 
 
Generalizing the algorithm: 
 
LinearSearch(array, n, find) 
{ 
    i = 1 
    while (i <= n AND array[i] != find) 
    { 
        i = i+1 
    } 
    if (i > n) 
    { 
        i = 0 
    } 
    return i 
} 
 
We take the comparison as our main operation (since the goal is to locate something, you 
must compare to realize you’ve found it).  We count only one of the two comparisons in 
the loop condition since it would simply multiply things by 2.  (We don’t really worry 
about the short-circuit property of the AND since that only applies in specific computer 
languages – not in generic algorithms.)  Counting we find: 
 
 
 
 
 
 
 
 
Best case time is 2 which is O(1) (or constant time).  Worst case is n+2 which is O(n) (or 
linear time). 
 
We see that the general formula for c(i) is i+1.  For the average case, p(i) is always 
1/(n+1). 

Best Worst Average Found at (i) Count 
1 0 1/(n+1) 1 2 
0 0 1/(n+1) 2 3 
… … … … … 
0 0 1/(n+1) n n+1 
0 1 1/(n+1) None (n+1) n+2 



To find the average time, we perform our standard summation: 
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So, for all the internal locations (where find is found) we have: 
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And for the last position (where find is not found), we have:     
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Together they make: 
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So, dropping the constant, we have A(n) = n/2 or “the average time for linear search is 
n/2”. 
 
 
 
 
 



Now to apply our Big-O litmus tests.  Algebraically we choose: 
 

3C =   and  0 0n =  
 
So that for n strictly greater than n0 we have: 
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Since all of our n values, the absolute value is the same as the value we have: 
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Checking: 
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Which is true since we chose n > 0 and all our n values are integral.  Therefore:  
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By limits (with a little L'Hopital) we get: 
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And since ½ is strictly less than ∞ , we again have that:  ( ) ( )A n O n∈  


