Back Substitution to Solve Recurrence Relations

Let's say you wanted a closed-form solution (explicit formula) for the recurrence relation:

$$R_1 = 1$$
$$R_n = 2R_{n-1} + 2$$

How could we go about it? One method is known as back-substitution or sometimes substitute-and-simplify. In this method we start with the general form of the recurrence $(R_n \text{ here})$ and substitute for the prior terms from the right side what they would be equal to:

$$R_n = 2R_{n-1} + 2$$

= 2(2R_{n-2} + 2) + 2

At first glance, it appears we've just made it messier, but we then proceed to simplify it somewhat:

$$R_n = 2R_{n-1} + 2$$

= 2(2R_{n-2} + 2) + 2
= 2²R_{n-2} + 2² + 2

The trick here is to never oversimplify things. The usual urge amongst young practitioners is to simplify it to the max like so: $4R_{n-2} + 6 = 2(R_{n-2} + 3)$. This oversimplification will lead us to nowhere fast. What we are looking for is a helpful pattern to help make this into that closed or explicit form. Let's just follow along for a bit:

$$R_n = 2R_{n-1} + 2 \tag{(*)}$$

$$= 2(2R_{n-2} + 2) + 2$$

= 2²R_{n-2} + 2² + 2 (*)

$$= 2^{2}(2R_{n-3}+2) + 2^{2} + 2$$
(*)
$$= 2^{2}(2R_{n-3}+2) + 2^{2} + 2$$

$$= 2^{3}R_{n-3} + 2^{3} + 2^{2} + 2 \tag{(*)}$$

Already from the starred lines we see a pattern forming. Whenever the subscript is having k subtracted, we are multiplying the R_{n-k} term by 2^k and adding a new 2^k term to the end. That is, we see:

$$R_{n} = 2R_{n-1} + 2$$

$$= 2(2R_{n-2} + 2) + 2$$

$$= 2^{2}R_{n-2} + 2^{2} + 2$$

$$= 2^{2}(2R_{n-3} + 2) + 2^{2} + 2$$

$$= 2^{3}R_{n-3} + 2^{3} + 2^{2} + 2$$

$$\vdots$$

$$= 2^{k}R_{n-k} + 2^{k} + \dots + 2^{2} + 2$$
(*)

In the new starred line — the extrapolated pattern line — we have the general form of the substitutions. But where does this lead us ultimately? We need to see how far k can take us. Since this recurrence started with n = 1 as the base case, we can take the k value all the way to n - 1 before n - k becomes undefined. That is, when we substitute in k = n - 1 we get n - (n - 1) = 1 as the subscript which is the initial value of the recurrence:

$$R_{n} = 2R_{n-1} + 2$$

$$= 2(2R_{n-2} + 2) + 2$$

$$= 2^{2}R_{n-2} + 2^{2} + 2$$

$$= 2^{2}(2R_{n-3} + 2) + 2^{2} + 2$$

$$= 2^{3}R_{n-3} + 2^{3} + 2^{2} + 2$$

$$\vdots$$

$$= 2^{k}R_{n-k} + 2^{k} + \dots + 2^{2} + 2$$

$$\vdots$$

$$= 2^{n-1}R_{1} + 2^{n-1} + \dots + 2^{2} + 2$$

$$= 2^{n-1}R_{1} + \sum_{j=1}^{n-1} 2^{j}$$

The last line changes the series of powers of 2 into a nice partial sum of a geometric sequence. It is just missing the $2^0 = 1$ term when j = 0. We can fix this by both adding and subtracting 1 from the right side and including the added one inside the partial sum as a 2^0 term. Let's also substitute in $R_1 = 1$ to get rid of that as well:

$$R_{n} = 2R_{n-1} + 2$$

$$= 2(2R_{n-2} + 2) + 2$$

$$= 2^{2}R_{n-2} + 2^{2} + 2$$

$$= 2^{2}(2R_{n-3} + 2) + 2^{2} + 2$$

$$= 2^{3}R_{n-3} + 2^{3} + 2^{2} + 2$$

$$\vdots$$

$$= 2^{k}R_{n-k} + 2^{k} + \dots + 2^{2} + 2$$

$$\vdots$$

$$= 2^{n-1}R_{1} + 2^{n-1} + \dots + 2^{2} + 2$$

$$= 2^{n-1}R_{1} + \sum_{j=1}^{n-1} 2^{j}$$

$$= 2^{n-1} + \sum_{j=0}^{n-1} 2^{j} - 1$$

Now we can simplify that partial sum with our handy formula from the summation section:

$$\begin{split} R_n &= 2R_{n-1} + 2 \\ &= 2(2R_{n-2} + 2) + 2 \\ &= 2^2R_{n-2} + 2^2 + 2 \\ &= 2^2(2R_{n-3} + 2) + 2^2 + 2 \\ &= 2^3R_{n-3} + 2^3 + 2^2 + 2 \\ \vdots \\ &= 2^kR_{n-k} + 2^k + \dots + 2^2 + 2 \\ \vdots \\ &= 2^{n-1}R_1 + 2^{n-1} + \dots + 2^2 + 2 \\ &= 2^{n-1}R_1 + \sum_{j=1}^{n-1} 2^j \\ &= 2^{n-1} + \sum_{j=0}^{n-1} 2^j - 1 \\ &= 2^{n-1} + \frac{2^n - 1}{2 - 1} - 1 \\ &= 2^n + 2^{n-1} - 2 = 2^{n-1}(2 + 1) - 2 = 3 \cdot 2^{n-1} - 2 \end{split}$$

Now, all this pattern finding is really just a conjecture on our part so we should

prove this is so by induction, of course. Let's have a go, shall we?

Proof:

Base Case: n = 1Left side: $R_1 = 1$ Right side: $3 \cdot 2^{1-1} - 2 = 3 \cdot 2^0 - 2 = 3 - 2 = 1$ These are equal, so the base case is proved.

Induction Step: Assume we know that for some $k \ge 1$ that $R_k = 3 \cdot 2^{k-1} - 2$. We will show that $R_{k+1} = 3 \cdot 2^{k+1-1} - 2 = 3 \cdot 2^k - 2$.

$R_{k+1} = 2R_k + 2$	back to recurrence definition
$= 2(3 \cdot 2^{k-1} - 2) + 2$	by inductive hypothesis
$= 3 \cdot 2 \cdot 2^{k-1} - 4 + 2$	
$= 3 \cdot 2^{k-1+1} - 2$	
$= 3 \cdot 2^k - 2$	

Thus we have proved our conjecture and the closed form (or explicit formula) for R_n is shown to be $3 \cdot 2^{n-1} - 2$.

Induction proof aside, hopefully the substitute-and-simplify method made sense and you can use it to solve simple cases and maybe even not-so-simple cases alike.

Exercises

Solve each of the following recurrence relations by back-substitution. (Don't forget to prove your result by induction afterward!)

- 1. $a_0 = 4$ and for $n \ge 1$, $a_n = 2a_{n-1} + 1$
- 2. $b_0 = 2$ and for $n \ge 1$, $b_n = n \cdot b_{n-1}$ *
- 3. $s_0 = 3$ and for $n \ge 1$, $s_n = s_{n-1} + n$
- 4. $t_0 = 0$ and $t_1 = 1$ and for $n \ge 2$, $t_n = t_{n-2} 2$

Solutions to Starred Exercises

2. Solving for b_n :

$$b_{n} = n \cdot b_{n-1}$$

= $n((n-1)b_{n-2})$
= $n(n-1)b_{n-2}$
= $n(n-1)((n-2)b_{n-3})$
= $n(n-1)(n-2)b_{n-3}$
:
= $n(n-1)(n-2)\cdots(n-k+1)b_{n-k}$
:
= $n(n-1)(n-2)\cdots1b_{0}$
= $2n!$

Proof:

Base Case: n = 0Left side: $b_0 = 2$ Right side: $2 \cdot 0! = 2 \cdot 1 = 2$ These are equal, so the base case is proved.

Induction Step: Assume we know that for some $k \ge 0$ that $b_k = 2k!$. We will show that $b_{k+1} = 2(k+1)!$.

 $b_{k+1} = (k+1) \cdot b_k$ by recurrence definition $= (k+1) \cdot (2k!)$ by inductive hypothesis = 2(k+1)k!= 2(k+1)!

Thus we have proved our conjecture and the closed form for $b_n = 2n!$.